If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x-636=0
a = 2; b = 6; c = -636;
Δ = b2-4ac
Δ = 62-4·2·(-636)
Δ = 5124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5124}=\sqrt{4*1281}=\sqrt{4}*\sqrt{1281}=2\sqrt{1281}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{1281}}{2*2}=\frac{-6-2\sqrt{1281}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{1281}}{2*2}=\frac{-6+2\sqrt{1281}}{4} $
| 2y-7=20y+83 | | 55+0.65x=35+0.75x | | |3x+8|+6=13 | | 8m-4m-6-3+5m=8/2-1 | | -4y-7/5y=1/2-3/5 | | 56=6g-3g+5g-24 | | 3x+10+5=18 | | 3/4(x+16)=18 | | 85x=163x+4 | | -4|r|=-4 | | 26+2x=1 | | 10-5=12-t | | 26+2x=146+2x | | 5/6=2n+9/9 | | 3x5-1=12 | | x+9=2x-4=x-1 | | T=5s+3.93 | | 3b–1.5=7.5 | | 55+0.65x=45+0.75x | | x(x^2+9x+26)=24 | | 4y+4=2(y+8) | | X^3+9x^2+26=24 | | b3-3=4 | | 6−7m=–5m | | 40+0.99x=1.49x | | R=-2c+78 | | -10m+6=26 | | x/11-5=9/11 | | (7y+2)/5=(6y–5)/11 | | -y+80-2y-100=-10+26 | | 10x-7=8x+13= | | 55/9=4/7k |